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Abstract

Non-isothermal polymeric flow past an asymmetrically confined cylinder has been analyzed using a finite-element

based numerical technique. The fluid model in this numerical simulation is a differential-type non-isothermal Bird–

Carreau model describing the non-Newtonian behavior of the melt. The generated thermal field is entirely due to

viscous heating. Drag, lift force and heat transfer on the cylinder and other flow characteristics are predicted. The

influences of cylinder lateral position and Reynolds number are also investigated.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The flow of a polymeric liquid past a cylinder be-

tween plates has been a research topic of considerable

interest in recent years. Non-Newtonian effects, such as

shear-thinning, temperature-thinning and inertia, that

possessed by most polymeric liquids are significant in

these flow situations. The understanding of such flow is

required for important engineering applications and has

attracted a great deal of attention in the literature.

Several researchers have studied flow past a sym-

metrically confined cylinder both experimentally and

numerically. Dhahir and Walters [1] measured the force

on a cylinder placed in a channel flow. They report that

viscoelasticity results in drag reduction. McKinley [2]

used LDV (laser doppler velocimetry) to measure the

flow around a cylinder fixed in the middle of a channel. A

downstream shift in the streamlines was reported. Cal-

culations were conducted for non-isothermal flow, byWu

[3] using EVSS finite-element methodology. They found

that non-isothermal drag is lower than isothermal drag,

and is more significant at higher Reynolds numbers.
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In the case of an asymmetrically confined cylinder, a

lateral force arises and tends to push the cylinder to-

wards the closer wall. Dhahir and Walters [1] measured

also the force on an asymmetrically-placed cylinder in a

channel flow, and found that viscoelastic increase results

in increased lateral force but reduced drag on the cyli-

nder. These results were corroborated by the numerical

simulations of Carew and Townsend [4]. Cochrane [5]

observed that streak lines are much more sensitive to

small asymmetry in cylinder confinement in a visco-

elastic fluid than in a purely viscous Newtonian fluid.

It is well known that the influences of temperature

change are often very important in polymer processing.

In this paper, we shall study non-isothermal effects on

polymeric flow past an asymmetrically confined cylinder

by numerical simulations using a finite-element method.

The generated thermal field is entirely due to viscous

heating. Drag force, lift force and heat transfer on the

cylinder and other flow characteristics are predicted. The

influences of cylinder lateral position and Reynolds

number are also examined.
2. Mathematical modelling

Fig. 1 describes the geometry of the present pro-

blem, i.e. non-isothermal flow of a shear-thinning and
ed.
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Nomenclature

Br Brinkman number

Cp Specific heat capacity, kJ/kg �C
d rate-of-deformation tensor, s�1

k thermal conductivity, W/mK

Nu Nusselt number

p pressure, N/m2

Pe Peclet number

Re Reynolds number

R ideal gas constant, J/moleK

d diameter of the cylinder, m

U mean velocity, m/s

T � dimensionless temperature

Greek symbols

$ gradient operator, m�1

q free stream density, kg/m3

e eccentricity factor

s shear-stress tensor, N/m2

_cc shear-rate tensor, s�1

h _cci average shear-rate, s�1

gð _cc; T Þ viscosity function, Pa s

/i quadratic basic function

wi bilinear basic function

Fig. 1. Geometry of the channel flow past an asymmetrically

confined cylinder.

Table 1

Rheological data and material functions used in the non-

isothermal Bird–Carreau model for LDPE

g ¼ gð _cc; T Þ ¼ g0ðT Þ½1þ ðk _ccÞ2�ðn�1Þ=2 q ¼ 900 kgm�3

g0ðT Þ ¼ g0;ref exp
E
R ð1=T � 1=Tref Þ
� �

Cp ¼ 1535 J kg�1 K�1

g0ðTwÞ ¼ g0;ref ¼ 19500 Pa s k ¼ 0:329 Wm�1 K�1

E ¼ 11700 cal/molK R ¼ 8:3 J/(moleK)

n ¼ 0:52 Tw ¼ 433 K

k ¼ 5:5 s Tref ¼ 433 K
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temperature-thinning polymeric fluid, low-density poly-

ethylene (LDPE), through a channel with an asym-

metrically confined cylinder. Refered to Fig. 1, channel

dimensions are h ¼ 14 mm and l ¼ 400 mm; cylinder

diameter d ¼ 4 mm. The laternal position of the cylinder

is indicated by an eccentricity factor

e ¼ e=ðh=2� d=2Þ: ð1Þ

Thus e ¼ 0 when the cylinder sits on the centerline of the

channel; e ¼ 1 when the cylinder touches the wall.

Non-isothermal flow of a polymeric fluid is governed

by the following set of conservation and constitutive

equations.

Continuity equation:

$ � t ¼ 0 ð2Þ

Momentum equation, neglecting body forces:

qðt � $Þt ¼ �$p þ $ � s ð3Þ

where s is the extra stress.

The total stress tensor is expressed as

r ¼ �pI þ s ð4Þ

where p is pressure and I is the unit tensor.
For fluids with constant properties: density q, heat
capacity Cp, and thermal conductivity k, the energy

equation is given as

qCpt � $T ¼ $ � kð$T Þ þ s : d ð5Þ

where d ¼ ð$tþ $tTÞ=2.
The generalized-Newtonian fluid model used by [6] to

model the non-isothermal flow of a LDPEmelt is defined

by the following equation, together with the curved-fitted

parameters and material functions in Table 1:

s ¼ 2gd ð6Þ

where viscosity function g ¼ gð _cc; T Þ is temperature and

shear-rate dependent. The shear-rate dependence is de-

scribed by the Carreau model, while the temperature

dependence is of the Arrhenius type.

Velocity is considered to be fully developed isother-

mally at the inlet. No slip boundary condition is applied

at the wall. Wall temperature is constant throughout.

Inlet temperature is assumed equal to wall temperature.

At the outlet, zero normal-force and zero heat-flux are

assumed.
3. Numerical method

The Galerkin finite-element method [7] is used to

solve the present flow problem and applied as follows.
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Fig. 2. Comparison between our numerical results and those of

Dhahir and Walters [1].

Y.M. Lin et al. / International Journal of Heat and Mass Transfer 47 (2004) 1989–1996 1991
3.1. Dimensionless governing equations

By applying the transformations t� ¼ t=U , $� ¼ h$,
g� ¼ g=g0;ref , T � ¼ ðT � TwÞ=ðTb � TwÞ, p� ¼ ph=Ug0;ref ,
and s ¼ sh=Ug0;ref to Eqs. (2)–(6), the dimensionless

governing equations are obtained:

$� � t� ¼ 0 ð7Þ

Ret� � $�t� ¼ $� � ð�p�I þ s�Þ ð8Þ

Pet� � $�T � ¼ $�2T � þ Br s� : d� ð9Þ

In these equations, Reynolds, Peclet and Brinkman

numbers are defined respectively as:

Re ¼ qUh=g0;ref ð10Þ

Pe ¼ qCphU=k ð11Þ

Br ¼ g0;refU
2=kðTb � TwÞ ð12Þ

where g0;ref is viscosity at both zero shear-rate and the

reference temperature, and Tb is defined as Tb ¼ Tw þ
1ðKÞ.

3.2. Weak formulation of dimensionless governing equa-

tions

The field variables are interpolated within each ele-

ment by

t� ¼
XN¼8

i¼1

/it
�
i ; p� ¼

XM¼4

i¼1

wip
�
i ; T � ¼

XN¼8

i¼1

/iT
�
i

where t�i , p
�
i , T

�
i are nodal values and /i, wi are quadratic

and bi-linear basic functions, respectively.

Following traditional Galerkin manipulation, the

weak form of the dimensionless governing Eqs. (7) and

(8) can be derived as:

Z
X
wið$� � t�ÞdX ¼ 0 ð13Þ

Z
X
½/0

iðRet� � $�t�Þ þ $�/0
i � ð�p�I þ s�Þ�dX

�
Z
s
/in � ð�p�I þ s�Þds ¼ 0 ð14Þ

where /0
i ¼ /i þ ð~kk�t�=t� � t�Þ � $�/i.

The traditional Galerkin method is known to be

inappropriate when the convective terms in the energy

equation become dominant as the Peclet number in-

creases. The streamline-upwind/Petrov–Galerkin for-

mulation (SUPG) developed by Brooks and Hughes [8]

is used to suppress undesirable oscillations in the cal-

culation of the temperature fields. To solve the equation

by this method, an additional weighing function for-

mulation ð~kk�t�=t� � t�Þ � $�/i is applied to all terms of the

energy Eq. (5), where ~kk� is the dimensionless form of ~kk
proposed by Brooks and Hughes. Consequently, the

following weak forms are finally obtained:

Z
X
f/0

i½Pet� � $�T � � Br s� : d�� þ $�/0
i � $�T �gdX

�
Z
s
/in � $�T �ds ¼ 0 ð15Þ

Since the integrals in Eqs. (13)–(15) are integrals of

polynomial functions, they may be readily evaluated

numerically using Gaussian quadrature. The above dis-

cretization processes lead to a system of non-linear

equations of the form

Kðx�Þx� ¼ f � ð16Þ

where Kðx�Þ is global stiffness matrices, f � is the force

vector, x� ¼ t�ð1Þx � � � t�ðn1Þx ; t�ð1Þy � � � t�ðn1Þy , p�ð1Þ � � � p�ðn2Þ,
T �ð1Þ � � � T �ðn3Þ, and n1, n2, n3 are respectively the number

of velocity, pressure and temperature nodal points.

The Newton–Raphson iteration method is employed

to solve the above set of non-linear equations. Due to

sparseness and asymmetry of the global stiffness matrix,

the biconjugate gradient stabilized (BiCGStab) method

[9] has been developed to compute all the unknowns at

each iteration step. Convergence is considered to be

achieved when the relative error of each of the dimen-

sionless variables is less than 10�4.
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4. Results and discussion

4.1. Test case

We have found no data in the literature that affords a

complete check of the validity of our methodology. One

previous study seems to serve this purpose to some ex-

tent. Dhahir and Walters [1] computed the force and

torque on a cylinder fixed at different eccentric positions

in a viscoelastic channel flow. They found the drag and

lift force on the cylinder per unit length of the cylinder as

D ¼ �
Z 2p

0

½rxx cos hþ rxy sin h�r¼RRdh ð17Þ

L ¼ �
Z 2p

0

½ryy sin hþ rxy cos h�r¼RRdh ð18Þ

where rxx ¼ �p þ sxx, ryy ¼ �p þ syy , and rxy ¼ sxy .
To partially validate our methodology, we performed

numerical simulation for the Newtonian case using our

proposed methodology and the geometric parameters

used by Dhahir and Walters, i.e. h ¼ 50 mm, l ¼ 800
Fig. 3. Central portions of the finite element meshes used for
mm and cylinder diameter d ¼ 30 mm, as shown in Fig.

1. Our results are compared with those of Dhahir and

Walters [1] in Fig. 2. As can be seen, the corresponding

solutions are quite consistent.

4.2. Numerical simulation of non-isothermal flow of

LDPE fluid passing an asymmetrically confined cylinder

Results for our present problem of non-isothermal

flow of LDPE past a asymmetrically confined cylinder

are presented now. Fluid properties are fixed, while flow-

rate and lateral position of the cylinder are allowed to

vary. Simulations are performed for a cylinder eccen-

tricity factor ranging from 0 to 0.36 and a Reynolds

number ranging from 0 to 0.000152, corresponding to a

Peclet number ranging from 0 to 46 000.

An extensive mesh analysis to get a mesh-indepen-

dent solution was first performed for the four eccen-

tricity cases, e ¼ 0, 0.33, 0.50 and 0.66. This analysis

gave four fine-enough finite-element meshes of 1736,

1612, 1550 and 1612 elements (labeled M1, M2, M3and

M4, respectively) which are used for the computation, as
the four eccentricity cases of e ¼ 0, 0.33, 0.50 and 0.66.



Table 2

Characteristics of the finite element meshes used

MESH No. of

elements

No. of nodes No. of DOF

M1 1736 14 344 21 516

M2 1612 13 844 20 766

M3 1550 12 844 19 266

M4 1612 13 844 20 766
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shown in Fig. 3. The number of nodes and degrees of

freedom (DOF) associated with each mesh are summa-

rized in Table 2.

The dimensionless temperature contours for the case

of e ¼ 0:50 are shown in Fig. 4 for Re ¼ 0:000038,
0.000076, and 0.000114. Because of the relatively large

inlet width of the channel, heat dissipation is very small,

and flow is close to being isothermal in the region up-

stream of the cylinder. However as the fluid passes
Fig. 4. Dimensionless temperature contours for the case of e ¼
Re ¼ 0:000076; (c) Re ¼ 0:000114.
through the throat (channel region with smallest dis-

tance between channel wall and cylinder) regions, it

subjects to strong shear between cylinder and channel

walls, results in sharp heat-dissipation and temperature

rise in the near-wall regions. Dissipation heat is con-

vected downstream, with maximum temperature occur-

ring near the lower wall. The maximum temperature

point moves downstream as flow-rate increases. For

high Reynolds number ðRe > 0:00005Þ, i.e. high Peclet

numbers, maximum temperature occurs at the outlet of

the channel near the lower wall. Fig. 5 shows the vari-

ation of dimensionless maximum temperature T �
max with

eccentricity factor e for four Reynolds numbers. It can

be observed from Fig. 5 that T �
max decreases with

increasing e in all cases. Moreover, downstream of the

cylinder, temperature distribution near the lower wall is

higher than near the upper wall, because the average

velocity between the cylinder and the lower wall (wide

throat) is larger between the cylinder and the upper wall
0:50 for three Reynolds numbers: (a) Re ¼ 0:000038; (b)
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(narrow throat). This is due to higher flow resistance

occurring at the narrow throat.

4.2.1. Nusselt number

Local Nusselt number, Nu, and overall Nusselt

number, Nu, are defined by the following expressions,

respectively, and can be readily derived from the tem-

perature field of the numerical solutions:

NuðhÞ ¼ oT �

or�

����
r�¼1

and Nu ¼ 1

2p

Z 2p

0

NuðhÞdh ð19Þ

Nu vs. eccentricity factor is shown in Fig. 6 for four

Reynolds numbers. Due to the fact that a larger amount

of heat is generated around the immersed cylinder with

increased Reynolds number, Nu increases. For increased

eccentricity, a lower Nu is predicted. Also, Nu decreases

further when temperature-thinning property of the fluid

is considered.

4.2.2. Drag on the cylinder

The drag and lift coefficients are defined as:

CD ¼ D
ðqU 2=2Þd and CL ¼

L
ðqU 2=2Þd ð20Þ

where U is the mean velocity of the channel and d is the

diameter of the cylinder.

Numerical solutions for D and L as a function of Re
are plotted in Figs. 7 and 8, respectively, for three

eccentricity cases. It is found that both D and L increase

as Re increases for the above eccentricity cases. Figs. 9

and 10 show the variation of the above dimensionless
forces with Re for the three eccentricity cases. Decreased

coefficients with Re are obtained. Furthermore, consid-

eration of the temperature-thinning effect of the fluid

reduces the above-calculated values CD and D, but in-
creases CL and L.
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5. Conclusions

Non-isothermal polymeric flow past an asymmetri-

cally-confined cylinder has been analyzed here using a

finite-element based numeric technique. The generated

thermal field is entirely due to viscous heating. It is

found by the proposed simulation that:
1. A high-temperature region downstream of the throat

occurs as throat velocity gradient is significant.

2. Both drag and lift increase with increasing Reynolds

number, but dimensionless drag and lift coefficients

decrease.

3. When the cylinder gets close to the wall, drag on the

cylinder decreases but lift increases.

4. Lift is very small compared with drag. If tempera-

ture-thinning property of the fluid is considered, drag

decreases and lift increases.

5. Nu around the cylinder increases with increasing Rey-

nolds number but decreases with increasing cylinder

eccentricity, and decreases further if temperature-

thinning property of the fluid is considered.

6. Maximum temperature occurs downstream of the

wide throat in the near-wall region. As flow rate in-

creases, this point moves further downstream. For

high Peclet number ðPe > 9000Þ, maximum tempera-

ture is predicted at the outlet near the wall of the

wider throat. Maximum temperature difference

between throat sides increases with increasing eccen-

tricity.
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